jueves, enero 08, 2009

Venter's dangerous pie-in-the-sky synth biofuels

Future Biofuels Could Be Created Out of Thin Air: Craig Venter & Synthetic Genomics

by Matthew McDermott, New York, NY on 01. 5.09

With the honeymoon phase of support for first generation biofuels (those derived from food crops such as corn, soybeans, etc) pretty much over, and research into second generation fuels (cellulosic fuels and those derived from non-food crops) ramping up, you’ll have to forgive me to jumping ahead to what may one day be termed third-generation biofuels: Ones using genetically engineered microbes to produce fuel. Yale Environment 360 has an interesting piece outlining some of the work being done in this area:

Beyond Second Gen Feedstocks...
Although the original piece covers some of the work being done by companies like Amyris Biotechnologies, LS9, and Solazyme, TreeHugger’s gone over much of this work before: Feeding sugar to microbes or algae to produce synthetic diesel fuel, biodiesel or bio-aviation fuel. Cool stuff on the horizon to be sure, but the work being done by Craig Venter and Synthetic Genomics is even farther off and even more interesting.

Synthetic Genomics’ Photosynthetic Bacteria Produce Refinery Ready Lipids
Here’s is the quick version of how Venter wants to use microbes to create lipids which could go straight into oil refineries, and take greenhouse gases out of the air at the same time:

Instead of waiting for plants to make hydrocarbons, Venter wants to cut out the middleman and head straight for their original source of carbon: the air. Researchers at Synthetic Genomics have been experimenting with photosynthetic bacteria, which (like plants) use the energy in sunlight to combine water and carbon dioxide. Using some of the genes Venter’s team has discovered, the researchers have altered the bacteria. Now the microbes can rapidly build molecules known as lipids. Lipids come in a range of forms and serve many functions in cells, storing energy, for example, and forming membranes. But instead of using lipids for such purposes, Venter’s bacteria secrete them. Researchers at Synthetic Genomics have drawn up plans for gathering those lipids.

Read the entire original article: The High-Tech Search For A Cleaner Biofuel Alternative

Second & Third Generation Biofuels
Geneticist Craig Venter Wants to Create Fuel From CO2
New Algae-Based Aviation Fuel Passes Key ASTM Test For Jet Fuel
Genomics Could Help Create Better Biofuels



The High-Tech Search For
A Cleaner Biofuel Alternative

A number of companies, including one headed by biologist and entrepreneur Craig Venter, are developing genetically engineered biofuels that they say will provide a greener alternative to oil. But some environmentalists are far from convinced.

by carl zimmer

Craig Venter is ready for his next incarnation.

In the 1990s, Venter became familiar to the world as a maverick who would sequence the human genome faster and cheaper than a huge team of government scientists. Six years ago he made headlines by announcing his plan to synthesize an entire genome from scratch, insert it into a cell, and manufacture a new species. In both cases, Venter has followed up his promises with some hard results. He published the first gold-standard sequence of an individual’s complete genome (his own). And while he hasn’t made an artificial life form yet, he and his colleagues at the J. Craig Venter Institute have achieved a series of landmarks, from synthesizing large chunks of DNA to performing the world’s first “genome transplant” on a microbe.

Now Venter says he wants to help save the environment. For some time, he has speculated that genetically engineered microbes could help wean the world off oil and reduce greenhouse gases at the same time. In 2005 Venter set up a company, Synthetic Genomics, to pursue that goal. And now, according to Venter, the company is seeking the capital to move forward. “We’re ready to build a pilot plant right now,” he says.

Venter is not a lone voice in the wilderness. A number of other companies have spent the past few years tinkering with microbes in the hopes of producing gasoline, diesel, and other fuels. Some of them are so far along in development that they’ll have microbe-produced fuels on the market in a few years. And their backers say fuels from microbes will be exactly the kind of clean alternatives to oil that the Obama administration will be pushing for.

Yet environmental experts are adopting a wait-and-see attitude. Details on how these fuels will actually be produced are fairly sketchy at this point. A
Synthetic biology fuels promise to be competitive with ordinary fuels when they hit the market in a few years.
new industry of microbial fuels might indeed prove to be green. Or it might lead to more greenhouse gases and create extra pressure to convert land to farm fields to feed these hungry microbes. “The devil is in the details,” says William Laurance, a senior scientist at the Smithsonian Tropical Research Institute who studies the environmental effects of biofuels.

The microbe-made fuels Venter and others are developing represent a new stage in the history of genetic engineering. In the 1970s, scientists figured out how to insert a gene from one species into another, launching the $80 billion biotechnology industry. In the past few years, however, scientists have made a series of important advances in engineering genes. It’s now possible to read genes cheaply and store their sequence in online databases. Venter and his colleagues, for example, have trawled the oceans for new genes and have identified over six million new ones.

It’s now relatively cheap for a scientist to send the sequence of one of these genes to a DNA-synthesis company and get copies of the gene delivered by FedEx in a matter of days. By inserting several different genes into a single microbe, scientists can engineer it to carry out complex chemical reactions to make new molecules.

This new version of genetic engineering goes by the name of synthetic biology. One of the epicenters of synthetic biology research today is Lawrence Berkeley Laboratory, which is directed by Obama’s nominee for Energy Secretary, Steven Chu. Jay Keasling a chemical engineer at Lawrence Berkeley, has had one of the lab’s biggest successes — engineering microbes to produce a powerful but expensive drug for malaria, called artemesinin. A San Francisco company called Amyris is now working on scaling up Keasling’s system for large-scale production of the drug. If they succeed, the cost of the drug may drop by 90 percent.

Along with new medicines, synthetic biologists now see another potential in their modified microbes: a source of energy. Today, a number of small companies, including Amyris, are developing new microbes that can turn their food — which might be anything from sugar to sewage — into hydrocarbons that can be used as fuel.

The companies are using different creatures, feeding them different foods, and hoping to make different fuels. Amyris, for example, has engineered yeast that can eat sugar cane juice and secrete diesel. In November, Amyris opened its first pilot plant in Emeryville, California. It expects its microbes to be churning 200 million gallons of diesel a year by 2011. Another company called LS9, has altered a different metabolic pathway in E. coli so that it can turn sugar into a hydrocarbon that’s similar to petroleum. A third company, Solazyme, feeds sugar to algae, which is raised in sealed steel tanks.

Synthetic biology, its backers claim, will change the rules of the energy game. There’s no need for building expensive rigs for drilling deep into the earth, or lopping off the tops of mountains to get coal. Every microbe is its own miniature refinery, carrying out complex chemical reactions that would be expensive to carry out in a man-made factory. Synthetic biology fuels promise to be competitive with ordinary fuels when they hit the market in a few years.

Advocates for these fuels promise that they won’t just be profitable. They’ll also be good for the environment.

LS9
LS9 has altered a metabolic pathway in E. coli so that it can turn sugar into a hydrocarbon similar to petroleum.

A car running on diesel will spew carbon dioxide into the atmosphere regardless of whether the diesel came out of the ground or out of a fermenter. But it takes a lot of energy to get diesel out of the ground, refined, and delivered to a car. Synthetic biology promises to eliminate a lot of the emissions created by producing this energy. Amryis claims that its biodiesel will produce 80 percent less greenhouse gases than conventional diesel.

Steven Aldrich, president of Bio Economic Research Associates, thinks synthetic biology fuels could indeed turn out to be good for the climate — at least compared to the fuels they’d be replacing. “Compared to conventional oil, sugar-to-fuel could have profoundly positive overall environmental consequences,” says Aldrich.

But a number of environmentalists aren’t convinced. “We can’t afford to say no to this research, but we really need to be ramping up our understanding of the risks,” says Nathanael Greene, director of renewable energy policy at the Natural Resources Defense Council.

Where, for example, would these microbes get their sugar? The most obvious source of sugar is sugarcane plantations, and some companies already are arranging a steady supply of the stuff to feed their microbes. Earlier this year, Amyris formed a partnership with Crystalev, one of the largest sugarcane growing companies in Brazil. The partnership was natural, not only because Brazil makes a lot of sugar, but also because they already use it to make fuel — specifically, ethanol.

That experience worries some scientists who study the environmental effects of biofuels. David Pimentel of Cornell University and Tad Patzek of the University of California at Berkeley have tallied up the environmental impact of ethanol production in Brazil, and they argue it’s not a pretty picture. It takes 393 kilograms of oil or its equivalent to produce a hectare of sugarcane, and it takes 12 to 14 kilograms of fresh sugarcane to produce a single liter of ethanol. Erosion is very high on sugar plantations, because farmers harvest almost the entire plant, leaving little behind to anchor the soil. According to Pimentel and Ptazek, Brazil sugarcane plantations lose 31 tons of soil from every hectare — 30 to 60 times more than the land can regenerate.

Sugar plantations are also very thirsty. To produce a single liter of ethanol in Brazil requires 7,000 liters of water. And as the water runs off sugar plantations, it carries with it some of the herbicides, pesticides, and fertilizers that are applied at high levels on the plants. Even after the cane is harvested, there’s still more wastewater to deal with: ethanol plants produce 10 liters of wastewater for every liter of ethanol they make.

READ THE WHOLE ARTICLE:
http://www.e360.yale.edu/content/feature.msp?id=2106

Etiquetas: , ,

0 Comentarios:

Publicar un comentario

Suscribirse a Comentarios de la entrada [Atom]

<< Página Principal